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A new adsorption isotherm equation, log log P = C + n log v, has been developed which 
characterizes many properties of the structure of porous materials, such as monolayer 
capacity of isotherms of Types I, II and IV, limiting micropore volume at extremely low 
pressure, degree and dispersion of micropores, mesopore surface area, mean pore size, 
etc. The equation has been successfully extended to binary and ternary mixtures, data for 
which have been obtained from the individual isotherms. It is also shown that a linear plot 
of the new isotherm implies that the distribution of adsorption volume with adsorption 
potential is Gaussian. Various other well know isotherm equations have been deduced 
from this new equation. The equation is direct and involves fewer mathematical 
calculations for solving the structural parameters of porous materials. 

1. Introduction 
Adsorption, in particular gas-solid adsorption, is 
of great practical value in many industrial appli- 
cations. Adsorption is related to pressure or 
relative pressure by means of the adsorption 
isotherm. Fundamentally, the adsorption isotherm 
should be derived from a molecular-statistical 
analysis, but almost all the working isotherms are 
analytical in origin. A number of adsorption 
isotherms have been developed in recent years [1 -  
3]. The isotherm developed by Polanyi [4] based 
on potential theory is one of the earliest isotherms. 
Dubinin [5] also based his isotherm on potential 
theory. According to this theory, the field of 
attractive forces of the adsorbent surface is 
characterized by the adsorption potential. This is 
thermodynamic, is determined by the spatial 
positions of gas or vapour molecules and is inde- 
pendent of other molecules in the potential field. 
It implies that the adsorption potential in this 
respect is similar to the gravitational potential. 
Adsorption potential A is the work done by 
adsorption forces in transferring one mole of 
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normal liquid in equilibrium with the saturation 
vapour pressure Ps to the adsorbed liquid state at 
a given point in equilibrium with vapour pressure 
p. It is given by 

A = RT /p )  dp = 2.303RTlog (Ps/P) 

(1) 

There are a number of other methods for the 
analysis of isotherm data, such as the t-method 
of Lippens and de Boer [6], the as-method of 
Sing [7, 8], comparison plots [9, 10] and the f- 
method [ 11, 12], etc., which make use of standard 
isotherms obtained with selected non-porous 
reference materials to derive surface and porous 
properties. 

In this paper, we have reviewed the various 
structural properties of porous materials by the 
application of the new isotherm developed by 
John and co-workers [13-16]. Various other well 
known adsorption equations have also been derived 
from the new isotherm equation. 
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2. Adsorption model 
According to the model based on potential theory, 
the change in free energy is equivalent to the 
potential energy of  attraction of  adsorbent on 
adsorbate. The model considers the van der Waals 
attraction based on a power law (V/Vs) n and the 
change in free energy is taken as a function of  
log(v/vs) n . Because of  the simplicity of  the model, 
the isotherm equation of  a pure gas has a simple 
mathematical form. The isotherm equation of  a 
mixture can be formed using the constants o f  the 
pure gas isotherms. This makes the mixture 
isotherm as simple as a pure gas isotherm. 

3. Deduction of the isotherm 
For a non-adsorbing gas, the work done in terms 
of  volumes is given by the relation 

w = 2 . 3 0 3 R T l o g ( v ~  (2) 

where v ~ and v~ are respectively the volumes at 
pressures p and Ps. The amounts of  gas in v ~ and 

O v s are the same. When v and v s are the volumes 
adsorbed respectively at pressures p and Ps, the 
amounts in v and v s are not the same. In this 
case the potential in terms of  volumes adsorbed is 
given semiempirically by the relation 

A = 2.303BoRT log(vs/v ) 

= 2 .303BRTlog (v s / v ) "  (3) 

Note that Bo = Bn. Since -- log(v/vs) ~ ,.~ b(1 -- x), 
where x = (v/vs)  n, the above equation can be 
written as [13-16]  

A = G ( ~ - - v  ~) (4) 

where G = 2 . 3 0 3 B R T b / v  n. Equating Equations 1 
and 4 one gets 

A = 2 . 3 0 3 R T l o g ( p s / p )  = G(v~ -- v " )  (5) 

Considering Vo to be the amount adsorbed at a 
very low pressure Po, an equation similar to 
Equation 5 can be written (when Ps > P >> Po) as 

Ao = 2 .303RTlog (ps /po )  = G ( ~ -  v~d) (6) 

Subtracting Equation 5 from Equation 6 and 
dividing the resultant by Equation 6, and assuming 
that v s > v>> re, the following equation can be 
obtained 

log p = log P0 + log(Ps/Po) (v/vs) n (7) 

Taking Po as 1, such that Vo (the amount adsorbed 
at Po) will be negligible compared to v or v s and 
log Ps = No, the above equation becomes 
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logp = No(v/vs)"  
Taking logarithms one gets 

log log p = Co + n log v (8) 

where Co = log N o - - n  log v s. Equation 8 is an 
adsorption isotherm equation and it can be used 
when adsorption is given as a function of  pressure 
and not as a function of  relative pressure. 

Again from Equation 7, we have 

log(P/Ps) (Ps/Po) = log(Ps/P0) (v/vs) n 
o r  

log(p/ps ) 10 N ~ -  log(10 N) (v/vs) n 

log e = N(V/Vs) n (9) 

where P = (p/ps)10 N and log(ps/Po ) = log(10 N) = 
N. Taking logarithms of  Equation 9 one gets 

log log P = C + n log v (10) 

where C = l o g N - - n l o g v  s . Equation 10 is 
designated as John's adsorption isotherm equation. 
Here N is an integer between 2 and 6. It may be 
stated that v (the amount adsorbed) is given as a 
function of  relative pressure PIPs. Here log log(p/ 
Ps) cannot be evaluated since log(p/ps) is negative. 
Hence PIPs is multiplied by 10 N so that togP  is 
posititive and log log P can be evaluated. It may be 
pointed out that the isotherm Equation 10 is 
semiempirical and is similar to the Halsey equation 
(Section 24). 

4. Deduction of the equation as a solution 
of the differential equation of diffusion 

John's adsorption isotherm equation can be 
deduced from the differential equation of  diffusion 
of  vapour from an isothermal adsorbing column 
of  finely divided material kept at a vapour pressure 
gradient [17, 18]. Let Vo, v and v s respectively be 
the amounts adsorbed at relative pressures Po/Ps, 
PIPs and 1. It is observed from experiments [19] 
that diffusion depends on vapour pressure p, 
second differential of  vapour pressure, porosity e 
and diffusion constant D. Hence the equation is 

D ( d a p / d m  2) = 3p/at  + A e p  (11) 

where m = ( 1 - x )  and x = ( v / v s )  n. At steady 
state the first term on the right-hand side becomes 
zero. The diffusion constant D = Doeb where Do 
is the diffusion constant in free atmosphere and b 
is the tortuosity function of  pores. Hence the 
above equation can be written as 

( d 2 p / d m 2 ) - - K Z p  = 0 (12) 



where K 2 = A/Dob .  Equation 12 is a second-order 
homogeneous differential equation whose solution 
is given by 

p = B e x p ( - - K m )  (13) 

At the lower boundary  where the vapour pressure 
is p~ (or relative pressure is 1), the amount 
adsorbed is v s and so m = 0. Hence p = B = Ps. At 
the upper boundary where the vapour pressure is 
Po (or relative pressure is Po/Ps), the amount 
adsorbed is Vo and hence m = 1. Therefore K = 
log(ps/p0 ) = N. Hence Equation 13, after putting 
in the above boundary conditions, becomes 

P = Ps exp ( - -Nm)  (14) 

Since m = 1 -- (V/Vs)" and P = (P/Ps)(Ps/Po) one 
could rewrite the above equation as 

log P = N(V/Vs) n 

Taking logarithms one gets 

log l ogP  = C +  n log v (15) 

where C = l o g N - - n l o g v  s. Equation 15 is the 
same as Equation 10, which is John's  adsorption 
isotherm equation. According to Hobson [20] an 
equation applicable at very low pressure should 
have logarithmic dependence both on pressure and 
adsorption. Equations 8 and 10 applicable at all 
ranges of  pressure are such equations. 

5. Distribution function 
It can be shown from Equation 14 that 

log(ps/p) = N ( 1 - - x )  (16) 

Multiplying both sides by 2 .303RT and squaring 
the above equation one gets with the help of  
Equations 5 and 6 

A 2 = (2.303RT)ZN 2 n [ -  log(v/vs)]/b 
o r  

A 2 = A ~ n[ - -  log(v/vs)]/b 
o r  

ln(v/Vs) = -- A 2 / (A 2on/2.303b ) 
o r  

v = vs exp(--A2s0) (17) 

where So = ( 2 . 3 0 3 b l A i n ) .  The equation shows 
that the distribution of adsorbed volume with 
potential is Gaussian [ 15, 16]. 

6. Meaning of  n 
Multiplying both sides of  Equation 16 by 2 .303RT 
one gets 

A = 2.303RTlog(ps/p)  = 2 .303RTN(1  - - x )  
(18) 

Since (1 - x) = ( -  log x ) /b  = -- (n/b)  log(V/Vs), 
the above equation becomes 

A = 2 . 3 0 3 R T l o g ( p s / p )  

= ( 2 . 3 0 3 R T N n / b )  log(vs/v) (19) 

An equation similar to Equation 19 can be written 
for a standard gas using subscript 1. The equation 
is 

A1 = 2 .303RT log(psa/pl) 

= ( 2 . 3 0 3 R T N n l / b )  log(vs l /v l )  (20) 

Dividing Equation 19 by Equation 20 one gets 
[16,21] 

A / A 1  = n/n1 = /3 

/3 may be designated as relative adsorbability. Thus 
n is a measure of  adsorbability. It is interesting to 
note that in general the adsorbate (adsorbent being 
the same) which gives the greater slope n for 
John's  isotherm is the one which has a higher van 
der Waals constant [22]. This is specially true in 
the case of  elemental adsorbates. But there is no 
simple relation between n and the van der Waals 
constant, probably due to other forces 
involved in adsorption [22]. It may also be stated 
that the van der Waats constant is a measure of 
adsorbability. The magnitude of n characterizes 
the type of interaction between a vapour and 
solid. It is also observed that the higher the 
Brunauer, Emmet t  and Teller (BET) constant C, 
the higher is the slope n of  John's  isotherm. 

7. Phases of adsorption 
When John's  isotherm is plotted, the plot gives 
straight lines with kinks or sudden changes in 
slope at the point where the phase changes. Each 
of the straight lines indicates a phase. These 
phases may represent pore filling, submonolayer, 
multilayer, capillary condensation and free liquid. 
It is found that in general micropore filling gives 
one phase. Type I gives mainly one phase with a 
very short phase (in a few cases) near saturation. 
Type II gives three phases and Type IV gives 
mainly three phases with a short phase near 
saturation [16, 23]. It is interesting to note that 
"point B" (endpoint of  submonolayer) is 
interpreted as the point where the monolayer is 
completed and the BET method determines it 
analytically. 

Physical adsorption theory demands that a 
phase transition be characterized by a distinct 
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discontinuity in the isotherm. The transitions take 
place due to changes in the physical properties of 
the adsorbate as a result of changes in adsorbent- 
adsorbate interaction as more and more adsorption 
takes place. According to Brunauer [1] each phase 
has roughly the same heat of adsorption. A break 
in the isotherm was explained in terms of the 
adsorbed phase [24, 25]. Such a change was 
observed by Madan e t  al. [26] at monolayer 
capacity in the case of the graph relating moisture 
adsorbed and period of drying for cotton. A 
sudden change in the properties of the adsorbed 
layer at the kink can be expected. The point where 
the affinity of the surface for vapour changes 
marks a sudden change in slope. Thus it is reason- 
able to identify the first kink in John's isotherms 
of Types II and IV as the point where the 
monolayer is completed. This change at monolayer 
can be observed by other methods also. It was 
observed by Dubinin e t  al. [27] that dielectric 
properties showed clearcut variation with mono- 
layer completion, capillary condensation and 
adsorption hysteresis. Fig. 1 shows the different 
phases of adsorption by means of John's isotherms. 

8. Monolayer capacity from Types II and 
IV 

It was observed by John and Bohra [28] that the 
first kink in John's isotherms of Types II and I V  
invariably occurs at monolayer capacity v m. One 
could also identify this kink as the point at which 
the experimental observations deviate from the 
extrapolated straight line joining the points in the 
lower pressure range [29]. The last experimental 

point on the straight line is taken as log v m, the 
logarithm of monolayer capacity. In this case 
points should be taken at short intervals near 
where the deviation starts. Fitzer and Laudenklos 
[30] used the method to determine the monolayer 
capacity v m. The method was also applied to 
determine the monolayer capacity from solute and 
dye adsorption [31]. Adamson [32] stated that 
fitting an isotherm equation to the data is an 
insufficient test for the validity of the isotherm. 
He stated that a seemingly more stringent test 
would be to determine the ratios of areas for 
various solids, as obtained by a given isotherm 
equation, which are independent of the nature of 
the adsorbate. Table I shows the monolayer 
capacity values for Type I, II and IV isotherms. 

9. Mean pore size and surface area from 
Type IV isotherm 

When adsorption data are plotted according to 
John's isotherm, it is observed that the second 
kink occurs at a pressure which when substituted 
in Kelvin's equation gives rm, the mean capillary 
radius of the adsorbent pores. Then using the well 
known equation [33] 

" S w = 2 V s / ( r m  + t)  (21) 

one can find the surface area. Here Sw, Vs and t 
respectively stand for surface area per gram, 
saturation volume and adsorbed thickness at the 
above pressure at the second kink. Results 
obtained using the method are given in Table II, 
from which it is evident that areas of a particular 
adsorbent determined by John's isotherm using 

T A B L E I Monolayer capacity for Type I, II and IV isotherms [16] 

No. Adsorbent Adsorbate Temp. 
(K) 

Monolayer capacity (cm 3 g-l)  

John's Literature 
method value 

1 Coconut charcoal N~ 77.2 
2 Carbon 1 N~ 90.2 
3 Carbon 17 N2 90.2 
4 Carbon 1 N2 77.2 
5 Carbon 17 N2 77.2 
6 Carbon 1 N2 77.4 
7 Carbon 4 N~ 77.4 
8 Carbon 19 Nz 77 
9 Carbon 20 N2 77 

10 PVC separator CC14 306 
11 H.G. catalyst CO 78 
12 Porous glass N~ 79.4 
13 Ferric oxide gel C2HsOH 333 

Numbers 1 -5  are of Type I, 6 - 1 0  are of Type II and 11-13  are of Type IV. 
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324 325 
405 393 
306 300 
436 431 
327 311 
290 280 
442 426 
319.5 308.2 
117.9 116.4 

13.5 13.1 
63.0 60.4 
27.2 27.8 
27.4 28.1 



T A B L E I I Surfacearea determined by means of mean pore size 

Number Adsorbent Adsorbate Temperature 
(K) 

Surface area (m 2 g-l) 

Present Literature 
method data 

Reference 

1 Ferric ~ ide gel C2HsOH 333 
2 Ferric 6"e~_:e gel C6H~ 273 
3 Silica gel C2HsNHC2H s 298 
4 Silica gel C4HgNH 2 298 
5 Silica gel C4 H9 NHC4 H9 298 
6 Porous glass C4Hlo 333 
7 Porous glass Ar 77 
8 Porous glass N2 79.2 

296 299 [23] 
315 299 [23] 
356 320(N2) [23] 
320 320(N2) [23] 
340 320(N~) [23] 
114 118 [231 
143 112 [33] 
136 120 [33] 

different adsorbates are independent of  the nature 

of  the adsorbates. 

10. Limiting micropore volume 
According to the present idea, the Type I isotherm 
is also due to pore filling as in the case of  
extremely low-pressure isotherms. When data of  
Type I and extremely low-pressure isotherms are 
plot ted according to John's  isotherm, one obtains 
mainly a straight line plot. In some cases for Type 
I, a kink and a very short second phase are 
obtained near saturation. The logarithm of  the 
limiting micropore volume, log vs, is obtained by 

ex t rapo la t ing  the straight line connecting the 

lower points to log l o g P  (where PIPs = 1) 
[34, 35]. The corresponding value of  log v at 

log l ogP  s is taken as log v s (Fig. 1). It is observed 
that the value of  l ogv  at the kink of  Type I 
(when it exists) is almost identical to the extra- 
polated log v s value. Results obtained by  this 
method are given in Table III. 

11. Micropore and mesopore volumes and 
mesopore area in the presence of 
micropores 

When adsorption takes place in porous materials 

containing all types of  pores, v t (the total  
adsorption at any relative pressure) can be 
expressed by  the relation [36, 37] 

vt = Urea + Vrn e "}- Vrn i 

where subscripts t, ma, me and mi respectively 
stand for total ,  macro-, meso- and rnicropores. 
Since Vma contributes little towards area, the 
above equation can be writ ten as 

v~ = Vmi + Smet (22) 

Note that Smet = vn~. When Vmi is not  a function 
of  pressure, the micropores will be filled at low 
pressure and the surface area and micropore 
volume could be determined by plotting a curve of  
v t against t according to Equation 22. The slope 
will give Sine and the intercept will give the micro- 

T A B L E I I I Limiting micropore volume [ 16 ] 

No. Adsorbent Adsorbate Temp. Micropore volume 
(K) 

v o (Dubinin) v s (John) 

1 Active carbon 1 C~ H 6 
2 Active carbon 2 C 6 H 6 
3 Active carbon 3 C6H6 
4 Active carbon 5 C 6 H 6 
5 Active carbon D2 C 6 H 6 
6 Active carbon E2 C 6 H 6 

(mmol g-l) 
293.2 0.82 0.86 
293.2 1.07 1.07 
293.2 2.43 2.46 
293.2 5.75 5.75 
293.2 0.254 0.279 
293.2 0.200 0.200 

(cm 3 g-l) 
7 Coconut charcoal N~ 77.2 325 324 
8 Carbon 1 N~ 90.2 393 405 
9 Carbon 17 N= 90.2 300 306 

10 C~bon 1 N~ 77.2 431 436 
11 C~bon 17 N= 77.2 311 327 

Numbers 1-7 are extremely low-pressure adsorption cases and the rest are of Type I. 
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Figure 1 (a) Adsorption isotherm of 
N 2 on carbon 1 a t -  195.8~ (Type 
I). (b) Adsorption isotherm of CC14 
on PVC separator at 32.8~ (Type 
II). (c) Adsorption isotherm of 
C2HsOH on ferric oxide gel at 60~ 
(Type IV) [23]. 

pore volume Vmi. When Vmi is a function of 
pressure, the t-method described above is not 
applicable to determine Sine and Vmi. In that case, 
Vmi could be expressed in terms of John's  isotherm 
[36, 37] as 

V m i  = Vs[(logP)/N] 1In = V s J  ( 2 3 )  

where J = [(log P)/N] 1In. Substituting Equation 23 
in Equation 22 and dividing by J one obtains 

vt/J = vs + Smet/J (24) 

The mesopore area and the micropore volume are 
obtained from the slope and intercept respectively 
of  the plot of  Equation 24 as shown in Fig. 2. The 
results are shown in Table IV. It is important to 
choose the correct 1In value for Equations 23 and 
24. At the start of  the linear portion of the curve, 
after the knee between v and PIPs, adsorption is 
mainly in micropores. The coordinates of  this 
point (the start of  the linear portion after the 
knee) on John's isotherm are log log PI and log vl. 
It was shown by Kadlec and Danes [38] that v at 
the start of  hysteresis (on the curve between v and 
PIPs) is almost equal to v s (the limiting micropore 
volume). The coordinates of  that point according 
to John's  isotherm are log log it's and log v s . Hence 

1/n = (log v s -- log vl)/(log tog Ps -- log log P~) 

(25) 
John et al, [14] have also shown that 

1In = 0.434BT~N~/1,1132 (26) 

It may be stated that in the region between the 
start of  the knee and the start of  hysteresis (of  the 
curve between v and PIPs) the contributions of  
micropore filling and adsorption on mesopores 
cannot be separated from vt (the total adsorption). 
But as stated by Dubinin and Kadlec [39] 

adsorption on mesopores is negligibly small and 
hence Vmi is almost equal to Yr. Hence, mesopore 
volume is obtained by subtracting Vs (the limiting 
micropore volume) from total adsorption V s at 
saturation. 

0 '62  -- ~176 

0 '60  -- 
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0 5 6  

0 5 4  

.~ 0 . 4 6  

0"44 

o 

y 0"41 ~ 

0.3~. 
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0"24 I I I I I 
2 '5 5 ' 0  3 '5 4"0  4 '5 5 0  

t/J (x l08cm)  

Figure 2 Plots of vt/J against t/J for benzene adsorbed on 
differentactive carbons 1 to 4 at 293 K [37]. 
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TAB L E IV Micropore volume and comparison of mesopore surface area and 1/n values determined by present and 
Kadlec methods [37 ] 

No. Adsorbent Adsorbate Temp. Micropore Mesopore surface 1/n value 
(K) volume (cm 3 g-l) area (m = g-l) 

Present Kadlec Present Kadlec Present Calculated 
(Eqn. 25) (Eqn. 26) 

l Active carbon 1 C 6 H  6 293 0.21 0.22 157 90 0.07 0.07 
2 Active carbon 2 C6H6 293 0.33 0.33 168 153 0.13 0.12 
3 Active carbon 3 C~H6 293 0.38 0.38 227 223 0.16 0.17 
4 Active carbon 4 C6H6 293 0.46 0.44 321 310 0.25 0.21 

12. Dispersion of micropores 
When John's isotherm is drawn using various data, 
broadly one can obtain four types of  isotherms 
[31, 40, 41], 

i.  In this case all the experimental points lie 
on a straight line. It indicates that the material 
has monodisperse micropore structure (Fig. 3a). 

2. In this case points in the lower-pressure 
region lie on a straight line but as the pressure 
rises above a certain value the experimental 
points deviate more and more from the extrapo- 
lated straight line joining the points in the low- 
pressure region. This indicates that there are 
mesopores which are being filled at higher pressure 
(Fig. 3b). 

3. In this type two straight lines connect the 
experimental points. The lower line is due to finer 
pores and the upper line is due to coarser pores. 
The limiting micropore volumes can be found by 
extrapolating the lines to log log P (where PIPs = 
1) and taking the corresponding value of  log v s. 
The two lines are expressed by [42] 

log log P = C~ + n~ log v (27) 
and 

log log P = C e + n e log v (28) 

The subscripts f and c stand for fine and coarse 
pores (Fig. 3c). 

4. Progressive activation increases but progressive 
impregnation reduces both porosity and pore size. 
From their adsorption isotherms one could see 
when the structural change occurs. Parallel 
isotherms of  the progressively activated o r  

impregnated material indicate that there are no 
structural changes since there is no change in the 
dispersion of  pores. Fig. 2 shows that the 
isotherms of  progressively activated carbons 1 and 
2 are similar in structure but activated carbons 3 
and 4 have undergone structural change. Since 
isotherms of  activated carbons 3 and 4 are not 
parallel to activated carbons 1 and 2, structural 
change is indicated. All these cases are illustrated 
in Fig. 2. 

13. Size, range and degree of microporosity 
It is clear from Equation 25 that 

n = (log log Ps -- log log P1)/(log v s -- log vl) 

(29) 

P1 refers to a very low pressure. If  the amount 
adsorbed corresponding to pressure P1 is very 
small, then n will not be high. This indicates that 
pores are distributed over a large range. But when 
the value o f  vl is very near to v s, the n value will 
be high, indicating that the pores are in a narrow 
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Figure 3 (a) Adsorption isotherm of 
benzene on active carbon 27 at 20~ 
(monodisperse). (b) Adsorption iso- 
therm of benzene on active carbon 
AU8 at 20~ (c) Adsorption iso- 
therm of benzene on active carbon 
D2 at 20~ (bidisperse) [16]. 
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Figure 4 John's isotherm plots for the system AU2, AU4, 
AU6 and AU8 [41]. 

range and are finer. Thus n is an indication of size, 
range and degree of microporosity of micropores 

[411. 
Kadlec and Danes [38] prepared charcoal of 

relatively uniform grain size by aereal separation 
from common granulated gas charcoal activated 
by water vapour at 900~ This material was 
separated into eight fractions of different 
specific weights. In this manner they obtained a 
series of samples with gradually varying degree of 
activation. The least activated and hence the most 
dense was designated AU1. The most activated and 
hence the least dense was designated AU8. The 
others were designated AU2, AU3, etc., depending 
on the degree of activation. Using the adsorption 
data collected as stated above, John's isotherm 
plots for the systems AU2, AU4, AU6 and AU8 
were drawn and are shown in Fig. 4. The results 
obtained along with the published data are given 
in Table V. It is clear from Fig. 4 and Table V that 

n decreases with activation. Earlier [14, 35] n was 
shown to depend on the adsorption potential. The 
high value of n of the less activated materials 
implies that their potential is high. Potentials will 
be higher in finer pores since the whole space in 
micropores is under the influence of adsorption 
forces emanating from all the side of the walls, 
thereby increasing adsorption fields in a 
substantial way. Hence one could conclude that 
higher n implies finer pores. In Fig. 4, AU2 has the 
finest pores, as shown by the n value. As n 
decreases with the series, the pores become wider, 
in agreement with the fact that the more activated 
ones have wider pores. Thus the n value of the 
isotherms decreases from the least to the most 
dense activated charcoals. Any point in the finer 
pores is affected by the proximity of the walls of 
the pores. This is the reason why narrow pores are 
filled at very low pressure. 

14. Reason for extrapolation 
The purpose of any isotherm is to obtain a linear 
plot in the whole range or at least in part of the 
range of adsorption. It is assumed that the iso- 
therm is valid in the linear range. The linear plot of 
John's isotherm implies a Gaussian distribution of 
adsorption volume with potential. Thus since the 
law of distribution is known, extrapolation can be 
made with a degree of certainty that is rather high. 
Extrapolation of the straight line portion of the 
isotherm means that the particular law of variation 
is also valid in the extrapolated range. This 
explains why extrapolation is made to log log Ps 
and the value of log v corresponding to log log Ps 
is taken as log vs, the logarithm of limiting 
micropore volume. 

15. Effect of linearity range on 
extrapolation 

It is found that monolayer capacity or limiting 
micropore volume depend on the range of linearity 
of the isotherms. For the same data the linear 
portions obtained by two different isotherms may 

T A B L E V Comparison of micropore volumes and the values of n in the adsorbents [41] 

Adsorbent Adsorbate Temp. Micropore volume (cm 3 g- 1 ) 
(K) v 0 (Dubinin) v s (John) 

AU2 C6C6 293 0.379 0.400 
AU4 C6C6 293 0.440 0.458 
AU6 CGH ~ 293 0.532 0.556 
AU8 C~H6 293 0.610 0.646 
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be in different pressure ranges. It will be observed 
that the limiting micropore volume obtained by 
extrapolation or the monolayer capacity will be 
greater for the isotherm that gives a linear portion 
in the lower pressure range [42, 43]. In the lower 
pressure range, since the number of molecules 
adsorbed per unit area is less, they do not react 
with one another. This is because the distance 
between adsorbed molecules is much larger than 
the diameter of the molecules. Reaction between 
molecules depends also on atomic number, shape, 
size and polarizability of the molecules. At higher 
pressure there will be more molecules per unit 
area, the distance between molecules will be less 
hence there will be a reaction between molecules 
causing the molecules to move away from each 
other. This will cause a decrease in the number of 
molecules per unit area. Both adsorption and 
repulsion take place not one after the other but 
simultaneously. Hence when this portion is used to 
extrapolate to determine limiting micropore 
volume or monolayer capacity, the result will be 
lower than that obtained from the lower pressure 
region [42, 43]. Thus it will be seen that the 
number of molecules adsorbed per unit area in the 
upper pressure region is lower than it would have 
been if there was no reaction between molecules 
and vice versa. Hence when the portion having 
fewer molecules than normally expected is used to 
determine v m or vs, the value determined will be 
lower. This effect will be more with more polar 
molecules and molecules having higher molecular 
weight. It may be stated that the linear range of 
BET isotherms is higher than the linear range of 
John's isotherms for the same data. Hence v m 
values determined by the BET method will be 
lower than those obtained by John's method. 

16. John's isotherm for total adsorption 
from binary and ternary mixtures 

A basic understanding of mixture adsorption is of  
great value in problem like separation and purifi- 
cation of gases, recovery of industrial solvents, 
production of gas masks, etc. Binary mixture 
adsorption data are scarce and ternary data are 
still scarcer. Considering binary mixture 
adsorption of gases 1 and 2, one can write the pure 
gas adsorption equations similar to Equation 8 as 
follows [44-46] 

log log p~ = C1 + nz log v~ (30) 
and 

log logp~ = C 2 + u s l o g v ~  (31) 

The binary mixture equation is given by 

log log p n  = C= + n12 log v= (32) 

where subscripts 1, 2 and 12 respectively stand for 
gas 1, gas 2 and the binary mixture. The superscript 
~ stands for pure component. Here 

nv. = y l n l  +)(?n2 (33) 
and 

C~ = y l C i  + Y 2 Q  (34) 

where Yl and Y2 are mole fractions of gas 1 and 
gas 2. Note that Yl +Y2 = 1. When ternary 
mixture adsorption is considered, the ternary 
mixture adsorption is given by [46] 

log logp,23 = C,93 + nl2a log v12a (35) 

"where the isotherm of the third component is 
(using subscript 3) 

o o 

log log Pa = Ca + na log v3 (36) 

Subscript 123 stands for the ternary mixture. Here 

n123 = y l n l +  y=n2 +yan3 (37) 
and 

C123 = y l C 1  +y2C2 +y3C3 (38) 

17. Determination of partial adsorption 
from binary and ternary mixtures when 
gases have similar adsorbabilities 

Two gases have similar adsorbabilites when their 
van der Waals forces are nearly equal. It was shown 
earlier that n is a measure of adsorbability. Hence 
it is reasonable to assume that the ratio of partial 
adsorption to total adsorption (i.e. vi/vta ) at any 
total is yir/i:nl2 the ratio of n value contribution 
of component i to the total n value of the mixture 
[221 or 

x~ = y i n i / n ~  = vi/vl~ (39) 

where xi is the mole fraction of component i 
adsorbed. Hence 

vi = x i v n  .... (40) 

Note that for binary mixtures xl + x2 = 1. Simi- 
larly it can be shown that for ternary mixtures the 
partial adsorption is given by [22] 

vi = x i v m  (41) 

where xl + x2 + xa = 1 for ternary adsorption. 
Table VI shows the total and partial values 

calculated by Equations 32 and 40 respectively. 
The data have been taken for adsorption of a 
mixture of N20 and CO2 on carbon at 0~ from 
Courty [47]. The gas phase composition is 73.9% 
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T A B L E V 1 Experimental data to show the validity of Equations 32 and 40 to determine total and partial adsorption 
in the binary mixture [ 22] 

No. Total pressure Total amount Partial adsorption 
(mmHg) adsorbed (cm 3) of CO 2 (cm 3) 

Published Calculated Published Calculated 
[47 ] (Eqn 32) [47 ] (Eqn 40) 

1 113.9 31.1 29.3 19.3 20.6 
2 286.5 50.2 49.2 33.4 34.6 
3 567.6 68.8 68.6 47.8 48.2 
4 984.2 86.4 87.1 61.8 61.3 
5 1556.2 101.4 105.4 73.7 74.2 

nl(N20) = 0.3908; 
n~(CO2) = 0.3273; 
n12 = 0.3438; 

C,(N20) = -  0.2957. 
C2(CO2) = -  0.1546. 
C,2 = - -  0.1914. 

CO2 and 26.1% N20. It could be shown to be true 
by drawing the adsorbed phase diagram, as was 
shown by John [22]. 

18.  L i m i t i n g  m i c r o p o r e  v o l u m e  using 
b inary  and te rnary  m i x t u r e s  

Total mixture adsorption at various total pressures 
are calculated using Equations 32 and 35 respect- 
ively depending on whether the mixture is binary 
or ternary. These equations are used when the 
amounts adsorbed are expressed in terms of  
pressure p. When the amounts adsorbed are 
expressed as a function of  relative pressure, total 
adsorption for various relative pressures are 
calculated using an equation similar to Equation 
10. Such an equation for a binary mixture 

is [44, 46, 48, 49] 

log l o g P n  = C12 + nl2 log vn  (42) 

and that for a ternary mixture is [48, 49] 

log log Pn3 = C123 + nn3 log vn3 (43) 

Then John's isotherm is drawn according to the 
above equations. The plot is extrapolated to the 
saturation line (where PIPs = 1) and the corre- 
sponding log v is taken as log vs (the logarithm of 
limiting micropore volume). Fig. 5 shows the 
graph used to calculate the limiting micropore 
volume v s for the case of  a ternary mixture and 
Table VII shows the values of  vs for binary and 
ternary mixtures. 

. . . .  LOG LOG I05 = 0 ' 4 7 7  . . . . .  

y/ / _ 

I I I I I I 
-1"5 - 1 ' 5  - I ' 1  - 0 " 9  - 0 ' 7  - 0 ' 5  - O ' S  

LOG v 
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Figure 5 Adsorption isotherms 
for (1) benzene, (2) methanol, 
(3) ethanol and (4)a mixture 
(20% benzene, 40% methanol 
and 40% ethanol) on AC29 at 
20~ according to Equations 
30, 31, 36 and 43 respectively 
[49]. 



TABLE VII Limiting micropore volumes [49] 

No. Adsorbent Adsorbate Temp. Limiting 
(~ C) micropore volume, %(cm 3 g-~) 

Calculated Published 

1 Active carbon CzHsC1 
2 Active carbon C2H s OC2H s 
3 Active carbon Binary mixture of 

1 &2 (50:50) 

4 AC29 C6H 6 
5 AC29 CH3OH 
6 AC29 C2HsOH 
7 AC29 Ternary mixture 

of 4,5&6 
(20 : 40 : 40) 

50 0.477 0.465 
50 0.477 0.466 

50 0.477 0.459 

20 0.400 - 
20 0.400 - 
20 0.400 - 

20 0.400 - 

19. Application of the Langmuir equation 
to determine the monolayer capacity 
and surface area from mixture 
adsorption 

Type I is attributed to microporosity in the 
adsorbent. Now it is generally accepted that the 
Langmuir model of localized monolayer adsorption 
is applicable only to certain special cases. 
Adsorption vn (or vn3) corresponding to P12 (or 
P123) can be determined by means of Equation 32 
(or Equation 35). The Langmuir equation for a 
binary mixture is [48, 49] 

P12/v12 = 1/(Vm12b ) .+ pl2/Vml2 (44) 

The Langmuir equation of ternary mixture 
adsorption is obtained by replacing subscript 12 
by 123 in Equation 44. A graph is drawn ofp12/v12 
against P12 in the case of binary (pro~v123 against 
P123 in the case of ternary) mixture adsorption. 
From the Langmuir plot, monolayer capacity vml 2 
(or Vm123 ) is determined by taking the reciprocal 
of the slope. Once the monolayer is obtained, the 
contribution of each component is obtained by 
application of the equation of Lewis et al., which 
for a binary mixture is [45, 49, 50] 

(vl/v~) + (v2/v;) = 1 (45) 

where v~, v~ and vn  (= vl + v2) are the amounts 
adsorbed at p~ = p~ = P12 (= Pl + P2). At mono- 
layer capacity one has to replace v~ and v2 in 
Equation 45 by Vml and v ~ .  Note that Vml 2 = 
Vm~ + v~a. Solving Equation 45 one can find 
Vml and vn-a since vm12 is known from the 
Langmuir equation as stated earlier. Since Vm~ and 
Vm2 are known, the area can be found by the usual 
method. In the case of ternary mixtures, one can 
write an equation similar to Equation 45 and 

determine Vml, vm2 and Vm3 provided one of them 
is known. The value of Vm123 can be easily deter- 
mined by plotting the Langmuir graph as stated 
earlier. 

20. Application of the BETmethod to 
determine monolayer capacity and 
surface area from mixture adsorption 

Total adsorption v12 (or v123) is determined 
corresponding to various total pressures by m~ans 
of Equation 30 (or Equation 33). The BET 
equation for binary adsorption is [45, 48, 49] 

x12/v12 (1 --x12 ) = (1/C*Vm12) 

+ (C* -- 1)x12/C*vml 2 (46) 

where x12 =P12/Ps12 and C* is a constant. The 
BET equation for ternary mixture adsorption is 
obtained by replacing the subscript 12 by 123. 
Using the relative pressure and the corresponding 
amount adsorbed, a graph is drawn of x12 against 
x12/vn (1 - x n ) .  Then the slope and intercept of 
the graph are evaluated. The monolayer capacity 
of  the mixture is found from the reciprocal of the 
sum of slope and intercept, and Vm123 for a 
ternary mixture can be found by the same method. 
The contribution from each component is found 
by the method of Lewis et al. as was described in 
the last section. The area Sw (in m 2 g-l)  for a 
binary mixture can be evaluated by the following 
equation 

Sw = S m  + Sw2 = (vmx/V1)Nsl x 10 -2o 

+ (Vm2/V2)Ns 2 x 10 -20 (47) 

where V1 and V2 are molar volumes and sl and s2 
are molecular areas of gases 1 and 2 respectively. 
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Figure 6 BET graph of a binary mixture of 
N~ and 02 oniron catalyst at --183 ~ C [45]. 

x12 

Fig. 6 shows the BET graph of  the binary mixture 
of N2 and 02 on an iron catalyst a t - - 1 8 3  ~ 
Individual adsorption data have been taken from 
Fig. 100 of  Brunauer [1]. The n values are 1.4 and 
0.729 and C values are - -0 .599  a n d -  0.072 for 
N2 and 02 respectively, and n 12 = 1.064 and C12 -- 
- -0 .335 .  The area calculated by means of 
Equation 47 comes out to be 22 .355m 2 g-1 and 

monolayer capacity Vml 2 = 5.366 cm a g-1 (Vml = 
3.587 cm 3 g- i ,  Vrn2 = 1.779 cm 3 g- l ) .  

Monolayer capacity and surface area values in 
the case of  a binary mixture and monolayer  

capacity of  a ternary mixture of  02,  N2 and Ar 
absorbed on activated charcoal at - - 1 8 3 ~  are 
given in Table VIII. Fig. 7 shows adsorption 
isotherms of  individual gases and their ternary 

mixture for the calculation of  monolayer capacity 
values. 

TABLE VIII Monolayer capacity and surface area values 

21. Equation of state for adsorbed gas on 
non-microporous adsorbents 

The equation of  state for the adsorbate involves 
three thermodynamic quantities, p, v and T. The 
isostere equation is also an equation of  state 
involving p and T, when v is kept constant. 
According to Zemansky [51 ] the equation of  state 
is not a theoretical deduction from thermo- 
dynamics but  is usually an experimental  addition 
to it. It expresses the results as accurately as the 
experiments in the range of  values measured. 
Based on Equation 9 John and Datta showed that  

[521 

(log P)/Tv" = constant (48) 

This implies that when the amount adsorbed is 

kept  constant (isostere), Equation 48 becomes 

a t - -  183 ~ C [491 

No. Adsorbent Adsorbate Monolayer capacity, 
vm(cm 3) 

Calculated Published 

Surface area 
(m ~ ) 

1 Activated charcoal O~ 
2 Activated charcoal N~ 
3 Activated charcoal Binary mixture 

o f l & 2  
(40 : 60) 

4 Activated charcoal O 2 
5 Activated charcoal N 2 
6 Activated charcoal A.r 
7 Activated charcoal Ternary mixture 

of 4,5 &6 
(20 : 30 : 50) 

43.4 45.2 165.8 
30.9 32.4 134.5 

37.0 

43.4 45.2 
30.9 32.4 
40.5 41.4 

34.4 

149.7 (71.0 
of N 2 and 
78.7 of 02) 
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(logP)/T = constant (49) 

and when temperature is kept  constant,  Equation 

48 becomes 

(log P)/v n = constant (50) 

When P is constant,  Equation 48 reduces to 

Tv" = constant (51) 

Nagpal and John [53] compared the well known 
isostere equation o f  Bikerman [54] 

Tlog(ps/p) = constant (52) 

I 

1.60 1.70 

Figure 7 Adsorption isotherms 
of (1)oxygen, (2)nitrogen, (3) 
argon and (4)a mixture (20% 
nitrogen, 30% oxygen and 50% 
argon) on activated charcoal at 
- -  1830 C according to Equations 
30, 31, 36 and 43 respectively 
[49]. 

with the isostere (log P)/T based on John's  iso- 
therm Equation 49. They found that  both  the 
isosteres are satisfactory at low relative pressures 
but for higher relative pressures the lat ter  equation 
seems to have greater applicability. Examples to 
prove the fact are given in Table IX. 

22. Identity of the equations of John and 
Dubinin 

It was shown earlier (Equation 16) that 

log(ps/p) = N(1 --  x)  

TABLE IX Comparison of isostere Equations 49 and 52 [53 ] 

No. Adsorbate/ Temperature Volume 
Adsorbent (K) 

Relative 
pressure 

Calculated values 

Eqn 49 Eqn 52 
(x 10 -3) (x 102) 

Mean error (%) 
in calculated values 

Eqn49 Eqn52 

(cm 3 g- 1 ) 

1 SO 2 / Silica gel ~ 193.0 100 
219.0 100 
232.6 100 

193.0 130 
219.0 130 
232.6 130 

(g/100 g) 

2 H~O/Carbon t 302.0 0.225 
I 313.2 0.225 

I 302.0 1.0 
313.2 1.0 

0.0672 4.29 2.26 
0.0894 4.34 2.30 1.0 1.0 
0.1047 4.38 2.28 

0.2059 6.81 1.32 
0.2269 6.19 1.41 5.6 6.0 
0.2660 6.13 1.34 

0.25 4.63 1.82 
0.08 5.2 0.30 4.72 1.64 

0.65 6.00 5.65 
0.75 6.00 3.91 0.0 15.4 
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22 .1 .  Case  l 
Since (1 - x )  is nearly equal to - [ log(V/vs)n] /b ,  

the Equat ion 16'can be writ ten as [14, 35] 

log(ps/p) = --  (N/b) log(v/v,) ~ 

= -- (Sn/b)  log(v/v,) 
o r  

log v = log v s --D1 log(Ps/P) (53) 

where D1 = b / N n  and b = 0 . 5 5  for the range 
0.5 ~< x ~< 0.95. Equation 53 is known as Dubinin's 
second structural type equation. It is also known 
as a Freundlich type equation. 

22.2 Case II 
Squaring Equation 16 one gets 

[log(ps/p)] 2 = N2(1 --  x) 2 

Since (1 --  x)  2 = --  [log(v/vs) n]/b, the above 

equation becomes 

[log(p,/p)] 2 = --  (N2/b) log(v/v,) n 
o r  

[log(ps/p)] 2 = --  (X2n/b)  log (v/v,) 
Hence 

log v = log v s - -  D2[log(ps/p)] 2 (54) 

where D2 = b / N 2 n  and b = 1.1 for the range 
0.15 <~ x ~< 0.5. Equation 54 is known as Dubinin's 
first structural type equation. It is also known as 
the equation of  the theory of  volume filling of  

micropores. 

22.3. Case III 
Cubing Equation 16 one gets 

[ log(pJp)]  a = Na(1 --  x) 3 

It can be shown that  ( 1 - - x )  a is nearly equal to 
- -  (log x)/b.  Hence 

[log(ps/p)] a = --  (Nan~b) log (v/v,) 
o r  

log v = log v, - - D a  [log(pJP)] a (55) 

where Da = b/Nan and b = 1.5 in the range 
0.05~<x~<0.35.  Equation 55 is a variation of  
Dubinin's equation corresponding to very fine 
micropores [55]. It has been shown that Equation 
16 can also be raised to non-integer values between 
2 and 3. Thus it is clear that all the equations of  
Dubinin's isotherms can be represented by John's  
isotherm. 

23. Deduction of a few other well known 
isotherms from John's isotherm [56] 

23.1. Henry's equation 
Equation 7 can be writ ten as 
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log (P/Po) = N(V/Vs) n 

where N = log(ps/Po). Hence 

P = P0 exp [N(v/vs) n] (56) 

Considering the very low-pressure region, where v 
will be very small compared to Vs, and expanding 
Equation 56 when n = 1, one gets 

P = Po + Po N(V/Vs) 4-. �9 �9 

where higher power of  N(V/Vs) are neglected. 
Hence one could write the above equation as 

v = A + Bp (Henry's equation) (57) 

where A = --  (v, /N) and B = vs/poN. 

23 .2 .  T e m k i n ' s  e q u a t i o n  

Taking logarithms of  Equation 56 when n = I, one 

gets 
log p = log Po + N(V/Vs) 

o r  

l ogp  = A + By (Temkin's equation) (58) 

where A = log P0 and B = N/vs. 

23 .3 .  F r e u n d l i c h ' s  e q u a t i o n  
Consider Equation 56 in the low-pressure region. 
Expanding, one gets 

p = po[1 + N ( V / V s ) n + . . . ]  

Higher powers of  N(v/vs)  n have been neglected. 

Hence 

P -- Po = Cv" 

where C = p o N / ~ .  Since P0 is very 
compared to p, 
equation as 

o r  

v = Cop TM 

small 
one could write the above 

p = Cv n 

(Freundlich's  equation) (59) 

where C o = ( l /C)  lm. 

23.4. de Boer and Zwikker's equation 
When n = 1, Equation 16 becomes 

log(ps/p) = N(1 --  v/vs) 

It can be shown that (1 - v/v,)  is nearly equal to 

exp [-- (V/Vs)]. Hence 

log(ps/p) = N exp [-- (v/v,)] 

Since v s (the saturation value) is a multiple of  
monolayer capacity Vm, one may write v s = rnv m. 
Hence the above equation can be written as 



log(ps/p) = Nexp[ - (v /vmm)]  = NKVo/vm 

where Ko = exp[ -  (l/m)]. Taking logarithms of 
the above equation, one gets, 

log log(ps/p ) = log N + (V/Vm) log Ko 

(de Boer and Zwikker's equation) (60) 

�9 24. Deduction of John's isotherm from the 
FrenkeI-Halsay-H ill equation 

The Frankel-Halsey-Hill (FHH) equation 
obtained by equating the expression for potential 
energy of atrraction with change in free energy of 
a mole of an ideal gas is [57] 

(v/vm) 3 = K/log(ps/p)  (61) 

where K is a constant which can be calculated in 
principle from the properties of the adsorbent and 
adsorptive. The index 3 arises form integration of 
the atomic separation term in the inverse power 
law which describes the dependence of attraction 
on atomic separation. Halsey [58] formulated a 
more general equation as 

(V/Vm) n = K~ log(ps/p) (62) 

where the index n is no longer necessarily an 
integral, and may be expected to be between 2 and 
3. The value of n may be taken as a rough guide to 
the strength of interaction between tile adsorbate 
and the solid. 

John's adsorption isotherm can be deduced 
from Equation 62 when exponent is 3 Or n. It can 
be shown that log(ps/p) is inversely proportional 
to logp, i.e. l o g ( p s / p ) = A / l o g p  where A is a 
constant. Hence Equation 62 becomes 

logp = Kl(V/Vm) n (63) 

where Ka = A/K.  Taking logarithms of Equation 
63, one gets 

log.log p = Co + n log v 

which is John's isotherm equation where Co = 
logK 1 -- n logv m. Thus when the exponent as 
determined by Equation 62 is 3, the isotherms 
have a theoretical basis. On the other hand when 
the exponent is other than 3, the isotherms 
have a semitheoretical basis. It may be stated 
that the higher the exponent in a power law, 
the shorter the range of interaction. Thus John's 
isotherms have a theoretical/semitheoretical 
basis depending on the exponent in Equation 
62 and an algebraic modification of the Halsey 
equation. 

25. Summary 
A new equation has been derived in a semiempirical 
way from potential thoery as well as via solution 
of a: differential equation of diffusion. The 
equation can be applied to determine monolayer 
capacity from Types I, II and IV and the limiting 
micropore volume from an extremely low-pressure 
isotherm. The isotherm enables the identification 
of different phases of adsorption and determines 
mean pore size of adsorbents giving Type IV 
isotherm. The isotherm can be applied to deter- 
mine mesopore area of adsorbents having micro- 
pores which will be a function of pressure and 
along with that it can determine the micropore 
and mesopore volumes. The isotherm can identify 
mono- and bidisperse pores and can detect struc- 
tural change in progressively activated or impreg- 
nated carbon or other porous materials. Total 
mixture adsorption from binary and ternary 
mixtures can be calculated using the constants of 
pure components. Partial adsorption in the case of 
a binary mixture can be determined provided the 
components have similar adsorbabilities. John's 
isotherm implies that the distribution of 
adsorption volume with potential is Gaussian and 
it can be used for gas, dye and solute adsorption. 
Some of the well known isothermsincluding that 
of Dubinin can be derived from John's isotherm. 
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